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Abstract

Adaptive Monte Carlo transport relies on learned information to accelerate
convergence to a zero-variance biasing solution. Such an iterative procedure
is vulnerable to false learning. Any scheme that attempts to avoid such false
learning must also avoid precluding zero-variance biasing, which may occur if the
scheme is too conservative in it's treatment for undersampled domains of phase
space. Hence, a delicate balance between the requisite convergence rate and the
all-important correct result must be struck.

This investigation has demonstrated instances of false learning (leading to
manifestly incorrect results). It has explored an avoidance [of false learning]
approach. And it has identi�ed a potential basis for diagnosing the presence of
false learning; namely, a comparison between theoretical and computed values of
quantities related to local behavior. Such comparisons recognize that, although
the global solution is unknown, local behavior is known. These �ndings have
been based on algorithms applied to discrete state transport scenarios, with an
eye toward eventual extension to continuous transport applications.

1. Introduction

This Research Note elaborates a presentation,[1] which was made at a Workshop on Adap-
tive Monte Carlo Methods.[2] This Workshop was held at Los Alamos National Labora-
tory (LANL) in August of 1996.

To disambiguate the discussions that follow, it is useful to present several working de�nitions,
in the context of adaptive Monte Carlo:

false learning (FL) { Learning falsely that a domain of phase space is a relatively unim-
portant contributor to the result; e�ected by adaptively inadequate sampling. FL can
lead to false convergence.
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false convergence { Convergence to a false result. The opposite of proper convergence.

demonstration of FL { Contriving a transport problem that poses a potential FL situa-
tion, which requires seemingly heroic a priori measures (i.e., ultra conservative initial
analog sampling) to avoid false convergence.

avoidance (of FL) strategy { Striving to insure that no sequence of transitions, which
could produce signi�cant score, is ignored.

FL diagnostics { Computed feedback that, based on a comparison of known and estimated
information, will suggest the presence of FL in the course of a calculation.

In the development of algorithms, two computing tools are often useful { a testbed and a
benchmark. The former provides a computational context to test an algorithm's functional-
ity. The latter provides the `truth' to validate the algorithm's solution.

1.1 Testbed for investigation

In this investigation, the testbed was a multi-state discrete Monte Carlo transport code,
written previously by Tom Booth.[3] This code adaptively iterates to zero-variance biasing[4]
for transition from statei to statej , viz.

qij = Cipij(sij +mj) (1)

where

qij is the zero-variance-biased transition (or termination) probability (statei to statej);

pij is the unbiased (analog) transition (or termination) probability;

sij is the associated transition (or termination) score;

mj is the estimated mean for statej;

Ci is the normalization for statei.

Note that for termination state0 (i.e., the graveyard), m0 = 0.

1.2 Benchmark for investigation

To serve as benchmark, a code[5] was writteny that computes analytic values of the means
corresponding to the multi-state discrete Monte Carlo transport testbed. The analytic values
are based on the iteration of:

mi =
nX

j=0

pij(sij +mj) (2)

where n is the number of states speci�ed, and state0 is the graveyard.

y As listed in Ref.[5], the source code contains a bug that was subsequently �xed.
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This benchmark code computes analytic values within the machine double precision, using
an internally computed criterion, viz.

subroutine epsil

implicit double precision (a-h,o-z)

common/epsilon/eps

c------ compute machine epsilon;

eps=1.

do 10 i=1,1000

if(1.0+eps.eq.1.0)go to 20

10 eps=eps/2.0

20 eps=2.0*eps

write(*,*)'machine epsilon=',eps

return

end

On a machine with 32-bit wordsize, the computed double precision is:

� = 2:2 � 10�16 (3)

2. Demonstration of False Learning

Recall that zero-variance-biased transition probabilities (beyond the initial iteration) are
given by Equation 1:

qij = Cipij(sij +mj)

and that m0 = 0. For a 2-state problem (with the source in state1), it is straightforward to
formulate a prescription for a scenario that is susceptible to FL, viz.

� Choose p12, p21, and s21 such that their product represents a rare-analog sequence of
transitions, but having a non-trivial expected score.

� Contrive to estimate q12 = 0 after the initial iteration. This can result from:

{ setting s12 = 0;

{ estimating m2 = 0 in the �rst iteration, which (given a �rst batch of histories too
small to overcome the odds) can result from:

� setting s20 = s22 = 0;

� setting p12 � p10 + p11 and p21 � p20 + p22.

In accordance with the above prescription, we contrive a 2-state problem (source in state1
and graveyard in state0), having the following transition probabilities and associated scores:
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TABLE I
Speci�cation

2-State Problem Susceptible to FL
Source in state1; graveyard in state0

state0 state1 state2
statei pi0 si0 pi1 si1 pi2 si2

state1 :990 1 :009 1 :001 0

state2 :990 0 :001 1� 106 :009 0

Using the 2-state problem speci�cation in Table I, the testbed and benchmark computed
results are presented in Table II below. The initial iteration for the testbed calculation used
unbiased (analog) transition probabilities.

TABLE II
Computed Results

2-State Problem Susceptible to FL
Source in state1; graveyard in state0

Initial histories Final m1 Final m2 False learning Convergence

106 1:0081 no estimate! initial m2 = 0 FALSE
insu�cient! � :0001 ) q12 = 0

107 2:0263 1009:1 AVOIDED PROPER
heroic? � :0003 � :1

Analytic values 2:02632 : : : 1009:08 : : : N/A N/A

Indeed, the results in Table II above are a clear demonstration of FL. With 106 histories in the
initial iteration, the initial estimate of m2 = 0, which in turn leads to a �rst estimate of the
zero-variance-biased transition probability q12 = 0; once that biased transition probability
has been zeroed-out, there can be no recovery. This outcome leads to a false convergence
of m1 = 1:0081 � :0001 and m2 = 0 (implied). But, when the number of histories for the
initial iteration is increased to 107, the calculation results in proper convergence for both
means (as veri�ed by the analytic values computed with the benchmark code).

Of course, the Table II annotations \insu�cient!," \no estimate!," and \heroic?" are face-
tious. Since the product p12 � p21 = 10�6, only 1 history (on average) in 106 will survive the
odds against tallying a score from state2. It is, therefore, not surprising that none did (for
an initial iteration of 106 histories), nor is it heroic that 107 initial histories enabled proper
convergence.
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3. An Avoidance Strategy

Having easily demonstrated FL, we turn our attention to developing a strategy for FL avoid-
ance. The crux of the matter is to insure that no sequence of transitions, which could produce
signi�cant score, is ignored. But such insurance, in a strict sense, is totally impractical for
any but the most trivial of systems. There is, however, a pertinent analogy in the search for
an exact zero-variance solution. Quoting Eugene Troubetzkoy,[6]

A case of zero variance is indeed an optimum optimorum and is of high theo-
retical interest. An exact zero-variance solution requires the complete and exact
knowledge of the answer to the problem to be solved. Should such a knowledge
exist, the Monte Carlo calculation becomes unnecessary. One usually conjectures
that an approximate knowledge of the answer, treated as exact [emphasis added

by HL], leads to an approximately optimal solution, or to near zero variance. We
are not aware of any serious attempts to prove this conjecture but do not have any
reason to doubt it. The existing evidence shows that, indeed, biasing schemes
generated this way lead to dramatic improvements in the variance. (See, for
instance, Ref.[7].)

The observed analogy is that a useful FL avoidance strategy could be based on the ten-

dency to interrogate all of phase space, without regard to analog transition probabilities.
Accordingly, the rationale for a strategy may be set forth as follows:

� Need to inspect adequately all states that contribute signi�cant score.

� In general, adequate inspection of all states is impractical.

� A strategy that tends to inspect all states may be a useful �rst step.

� Given a �nite �rst iteration, how can unbiased probabilities be modi�ed to display
such a tendency?

The choice of strategy that comes to mind is a priori learning using uniform-biasing transition
probabilities. Hence, Booth's testbed code was modi�ed to accommodate such biasing for
the initial iteration; all subsequent iterations would continue with adaptive zero-variance
biasing (Equation 1).

3.1 Test strategy scenario

The objective for a scenario to test the avoidance strategy was to quantify and gauge its
e�cacy, using an unbiased initial iteration for comparison. For speci�city, a sequence of tests
was de�ned, with increasing number of states (n), having tight coupling between contiguous
state numbers (statei; i = 1; n):

� Restrict transitions to a contiguous state or termination only, with source in state1 and
termination in graveyard state0.
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� Disallowing other (including in-state) transitions merely accelerates testing.

� Assign pij = :1 probability for all statei-to-statej transitions, i 6= j.

� Assign remaining probability to termination; pi0 = :9 for an `end' state (i.e., state1
and staten) or pi0 = :8 for an `interior' state.

� For source state1, assign score s10 = 1 for termination; score s12 = 0 for transition to
state2.

� For every statej ; j > 1, assign score sj;j�1 = 100 for `downscattering' to statej�1;
sj0 = sj;j+1 = 0 score otherwise.

A medium so de�ned is relatively opaque to arrival at higher-number states. Since the
higher-number states contribute signi�cant score (upon `downscattering'), such a medium
poses di�culty for FL avoidance. The state-to-state matrix for n = 6 is given in Table III
below.

TABLE III
6-State Scenario State-to-State Matrix
Source in state1; graveyard in state0

state0 state1 state2 state3 state4 state5 state6
statei pi0 si0 pi1 si1 pi2 si2 pi3 si3 pi4 si4 pi5 si5 pi6 si6

state1 :9 1 :0 0 :1 0 :0 0 :0 0 :0 0 :0 0

state2 :8 0 :1 100 :0 0 :1 0 :0 0 :0 0 :0 0

state3 :8 0 :0 0 :1 100 :0 0 :1 0 :0 0 :0 0

state4 :8 0 :0 0 :0 0 :1 100 :0 0 :1 0 :0 0

state5 :8 0 :0 0 :0 0 :0 0 :1 100 :0 0 :1 0

state6 :9 0 :0 0 :0 0 :0 0 :0 0 :1 100 :0 0

The \conditions of contest" for this numerical experiment were simple:

1. Seek the threshold number of histories required in the �rst (i.e., a priori learning)
iteration to compute a non-zero mean for every state known to have a non-zero mean.

2. Use an incrementing algorithm that tries 10� the number of histories every time a
known non-zero mean is computed as zero.

3.2 Test strategy results

The test scenario speci�ed in the preceding section was computed for the cases n = 2 � 6.
For each case, the crucial comparison was the threshold number of histories in the initial
iteration that was required to avoid FL (i.e., learning falsely that a known non-zero mean
is zero). The protocol for increasing the number of states n, starting with n = 2, was to
start each new case with the threshold number of histories for the preceding case (having
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one fewer state); the starting number for the 2-state case was a mere 10 histories. With each
instance of failure to avoid FL, the incrementing algorithm was invoked (see \conditions of
contest" # 2 in preceding section). The results are summarized in Table IV below.

TABLE IV
Threshold Histories for Initial Iteration
(a priori un-biased vs. uniform-biased)

# States Un-biased Uniform-biased

2 100 10

3 1,000 10

4 100,000 100

5 100,000 100

6 10,000,000 1,000

The striking results in Table IV support the conjecture that the tendency to inspect all states
has the tendency to avoid FL.

4. Diagnostics

Having easily demonstrated FL, and investigated a strategy that tends to avoid it, it must
be noted that we are not aware of any guarantee that FL can always be precluded. Despite
extensive e�orts by many investigators over the years, we have always encountered situations
that have stymied our best FL traps in non-adaptive Monte Carlo. That is, no matter
how meticulous the prescription for forming valid con�dence intervals, there seem to be
pathological scenarios that escape detection.

Thus, taking a cue from non-adaptive Monte Carlo methods, it would seem pro�table to
seek some mechanisms for diagnosing the presence of FL in adaptive Monte Carlo methods.
The garden-variety of FL should be identi�able, though pathological FL will likely prevail.

A logical starting point for developing a diagnostic algorithm is consideration of a prerequisite
issue, namely, identifying its desired attributes. For an FL diagnostic ag, some of its
attributes are that it:

� be a true indicator of FL presence;y

{ ideally, appear in FL presence and vanish in FL absence;

{ less-than-ideally, have diminished magnitude in FL absence;

y This is a tautology, but its speci�cation is important.
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� be succinct (for easy comprehension); one number or a small set, such as the MCNPTM

statistical tests;[8]

� be computable without undue diversion of resources from the main purpose of the
calculation.

Recall that FL is introduced when scoring-transitions are undersampled. Moreover, FL is
enhanced when the undersampled-scoring is relatively large. This suggests a basis for an FL
ag:

Comparison between computed and theoretical values of state-to-state

branching fractions, weighted by the associated scores.

This suggested basis for an FL diagnostic ag is a recognition that, although the global
solution is unknown, local behavior is known.

4.1 Proposed de�nition of an FL diagnostic ag

Let Sest be the estimated quantity

Sest =
nX

i=1

nX

j=0

(
bijsij

wi

) (4)

Let Skwn be the known quantity

Skwn =
nX

i=1

nX

j=0

pijsij (5)

Then we de�ne an FL flag to be

flag = 1 �
Sest

Skwn
(6)

where

n is the number of discrete states (state0 is the graveyard);

wi is the total weight entering statei;

bij is the weight branching from statei to statej;

pij is the transition probability from statei to statej;

sij is the associated score;

and i 6= k for wk = 0. Note that the ag is a single computed quantity, independent of n.
Also, the ag vanishes for Sest = Skwn, which is unlikely in the presence of FL, for a small
number of non-zero sij.

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.
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4.2 Test of proposed FL ag

We consider the following de�nition for Scenario 1:

� tight coupling between contiguous states;

� source in state1; graveyard in state0;

� termination probability pi0 = :4 in all statesi;

� transition (to nearest neighbor) probability pj;j�1 = pj;j+1 = :3 for interior states;

� transition probability p12 = pn;n�1 = :6 for end states;

� score sn0 = 1 for termination in highest staten;

where n varies from 2 to 8 in this test.

The results for the above de�ned set of calculations are presented in Table V below. The
so-called \machine epsilon," is given by Equation 3, viz.

� = 2:2 � 10�16

which is the (double) precision of the benchmark analytic calculations. The columns giving
the results for statem correspond to the results having the maximum computed % relative
error in each case.

TABLE V
Diagnostic Flag Results { Scenario 1

n states state1 statem staten ag

mean error [%] mean error [%] mean error [%]

2 0:37500 � :005 0:62500 � :01 0:62500 � :01 + :02
analytic 0:374999 : : : � 0:624999 : : : � 0:624999 : : : �

3 0:11250 � :01 0:51251 � :02 0:51251 � :02 � :02

analytic 0:112499 : : : � 0:512499 : : : � 0:512499 : : : �

4 0:037088 � :009 0:16896 � :01 0:50137 � :004 + :01

analytic 0:0370879 : : : � 0:168956 : : : � 0:501373 : : : �

5 0:012347 � :01 0:012347 � :01 0:50015 � :002 � :0003

analytic 0:0123475 : : : � 0:0123475 : : : � 0:500152 : : : �

6 0:0041153 � :008 0:55633 � :01 0:50002 � :01 � :02

analytic 0:00411529 : : : � 0:556327 : : : � 0:500016 : : : �

7 0:0013717 � :009 0:62490 � :02 0:50000 � :03 + :01
analytic 0:00137174 : : : � 0:624905 : : : � 0:500000 : : : �

8 0:00045725 � :008 0:61813 � :01 0:500000 � :002 � :02
analytic 0:000457250 : : : � 0:618130 : : : � 0:5000000 : : : �
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The results in Table V are indicative of proper convergence (absence of FL). The testbed
results are con�rmed by the analytic values. The ag behavior is seen to uctuate about zero,
with a magnitude on the order of the % relative errors for the means of statem. The latter
does not imply a theoretical interpretation; it is merely o�ered as a convenient reference for
such dimensionless quantities.

We modify Scenario 1, by changing speci�cation of staten, to establish Scenario 2. The latter
will encourage an FL situation:

� termination probability pn0 = :999;

� transition (to lower neighbor) probability pn;n�1 = :001;

� score for transition sn;n�1 = 400.

The results for Scenario 2, as de�ned above, are presented in Table VI below.

TABLE VI
Diagnostic Flag Results { Scenario 2

n states state1 statem staten ag
mean error [%] mean error [%] mean error [%]

2 0:40000 � :02 0:40000 � :02 no estimate N/A + :5
analytic 0:640384 : : : � 0:640384 : : : � 0:400640 : : : �

3 0:48780 � :02 0:14634 � :01 no estimate N/A + :5
analytic 0:575674 : : : � 0:292790 : : : � 0:400292 : : : �

4 0:49863 � :005 0:16438 � :01 no estimate N/A + :5
analytic 0:528232 : : : � 0:213721 : : : � 0:400184 : : : �

5 0:49984 � :003 0:548612 � :01 no estimate N/A + :5
analytic 0:509726 : : : � 0:9986447 : : : � 0:4001500 : : : �

6 0:500000 � :0006 0:16663 � :01 no estimate N/A + :5
analytic 0:5032763 : : : � 0:172127 : : : � 0:400138 : : : �

7 0:500000 � :0003 0:6098 � :03 no estimate N/A + :5
analytic 0:5010958 : : : � 0:50562 : : : � 0:400135 : : : �

8 0:5000002 � :00006 0:18296 � :01 no estimate N/A + :5
analytic 0:50036571 : : : � 0:046492 : : : � 0:400133 : : : �

Finally, we modify Scenario 2, by using a priori uniform biasing, to establish Scenario 3.
The latter will tend to avoid the FL inherent in Scenario 2. The results for Scenario 3 are
presented in Table VII below.
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TABLE VII
Diagnostic Flag Results { Scenario 3

n states state1 statem staten ag
mean error [%] mean error [%] mean error [%]

2 0:64038 � :01 0:64038 � :01 0:40064 � :009 � :002
analytic 0:640384 : : : � 0:640384 : : : � 0:400640 : : : �

3 0:57568 � :01 0:29280 � :01 0:40029 � :01 � :001
analytic 0:575674 : : : � 0:292790 : : : � 0:400292 : : : �

4 0:52823 � :01 0:52823 � :01 0:40018 � :01 + :001
analytic 0:528232 : : : � 0:528232 : : : � 0:400184 : : : �

5 0:50973 � :006 0:40015 � :02 0:40015 � :02 � :002
analytic 0:509726 : : : � 0:400150 : : : � 0:400150 : : : �

6 0:50327 � :009 0:40014 � :01 0:40014 � :01 + :006
analytic 0:503276 : : : � 0:400138 : : : � 0:400138 : : : �

7 0:50105 � :01 0:40014 � :02 0:40014 � :02 � :002
analytic 0:501095 : : : � 0:400135 : : : � 0:400135 : : : �

8 0:50036 � :004 0:020985 � :02 0:40013 � :01 � :003
analytic 0:500365 : : : � 0:0209864 : : : � 0:400133 : : : �

The results in Table VI are indicative of false convergence (presence of FL). The testbed
results are manifestly di�erent than the analytic values. The ag behavior is seen to maintain
a positive value of .5, whose magnitude is signi�cantly greater than the magnitude of the
% relative errors for the means of statem. Again, the latter does not imply a theoretical
interpretation; it is merely o�ered as a convenient reference for such dimensionless quantities.

When a priori uniform sampling is introduced for the initial iteration (Scenario 3), the
results in Table VII demonstrate the proper convergence. The testbed results are once again
con�rmed by the analytic values, and the ag behavior is seen to uctuate about zero, being
an order of magnitude less than the % relative errors for the means of statem.

4.3 Follow-on work

FL diagnostics, based on estimates of cumulative branching fractions, will probably prove
inadequate for large numbers of scoring-states. We will need to search for an alternative
ag-basis that can function well, independent of the number of scoring-states. Ultimately,
we need to extend the diagnostics algorithms to continuous transport scenarios.
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5. Summary

Adaptive Monte Carlo transport relies on learned information to accelerate convergence to
a zero-variance biasing solution. Such an iterative procedure is vulnerable to false learning.
Any scheme that attempts to avoid such false learning must also avoid precluding zero-
variance biasing, which may occur if the scheme is too conservative in it's treatment for
undersampled domains of phase space. Hence, a delicate balance between the requisite
convergence rate and the all-important correct result must be struck.

This investigation has demonstrated instances of FL, which lead to manifestly incorrect re-
sults. It is straightforward to contrive such a scenario, for zero-variance biasing (Equation 1),
viz.

qij = Cipij(sij +mj)

as follows:

� Specify a signi�cant score, sjk,

� for only one low-probability transition from statej, pjk � 1,

� so as to e�ect an initial-estimate of mj = 0,

� for statej ,

� which has no associated score upon entry from all statei, sij = 0,

� whereby qij = 0 (constituting FL), which leads to false convergence.

We have also noted some evidence that the tendency to inspect all states has the tendency
to avoid FL. And we have identi�ed a potential basis for diagnosing the presence of false
learning, namely, a comparison between theoretical and computed values of quantities related
to local behavior. Such comparisons are based on the recognition that, although the global
solution is unknown, local behavior is known.

These �ndings have been based on algorithms applied to discrete state Monte Carlo transport
scenarios. Follow-on e�orts will strive toward eventual extension to continuous transport
applications.
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